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Abstract 
The connections between DSC curves and thermodynamic poten- 

tial functions are shown. It is easy to calculate the speci- 
fic heat capacity and thus the potential functions from the 
heat flow rate in the case of steady state conditions, but in 
the region of phase transitions and reactions the relations 
are not so easy and special "desmearing" procedures have to 
be applied. Additional complications result from the non- 
uniform temperature field inside the sample. With this correc- 
tions included, DSC is a smart method to get the thermodyna- 
mic potential functions. 

1. THEORY 

The thermodynamic potential functions will be calculated 
from heat capacities, which in their turn are defined as 

C,(T) = IdQ/dTI, C,(T) = IdQ/dTI, (1) 

that is to say, as the amount of heat necessary to rise the 
temperature one Kelvin. Usually the amount of substance in 
question is chosen to be one mole for this definitions. The 
subscript indicates that the volume or the pressure has to be 
held constant during the measurement. The difference of these 
two quantities is 

C,- C" = T.V*cr2/K (2) 

where V is the molal volume, CI the isobaric thermal volume 
expansion coefficient and K the isothermal compressibility. 
For solid bodies this difference is often neglected, but also 

this case C is 3 - 10 percent larger as C, and these 
itantities are hot 

two 
interchangeable for precise measurements. 

From the heat capacities the thermodynamic potential func- 
tions can be calculated: 

U(T) = lC,dT + j(XJ/N),dV (3) 

H(T) = IC,dT + j(JH/ap),dp (4) 
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S(T) = j(C,/T)dT - jvadp (5) 

F(T) = U(T). - T.S(T) (6) 

G(T) = H(T) - T-S(T) (7) 

To get the respective specific quantities (written in small 
capitals) they should be divided by the molal mass in ques- 
tion. 

The calculations to get the potential functions are simple 
integrations and summations of the respective heat capacity 
functions if the volume or the pressure is held constant 
(dV=O or dp=O) during the measurement. Thus the question 
arises how we can get these functions from the DSC curves. 
Normally the output of a DSC is a heat flow rate function 

of time a(t). As time and program temperature are linearly 
connected via T, = B t + T, the output may also be given as a 
function of temperature namely T,. But in heating and cooling 
mode the sample temperature T, is different from the program 
temperature because of temperature gradients along the heat 
flow path. 
Beside this discrepancy the specific heat capacity can be 

determined from the differential heat flow of the sample and 
baseline (empty pans) run 

c,(T) = nQ(T,)/(B*m,) for open pans (p = const.) (8a) 

c,(T) = ~@(T,)/(p*rn~) for sealed pans (v = const.) (8b) 

(fi: heating rate, m: sample mass, A@ = a, - a,: steady State 
heat flow rate) and by integration of these equations we get 
the enthalpy or internal energy respective entropy. 

H - Ho = AH = jaQ(T,)/(B*ms)dT = ja@(T,)/m,dt (p=COnSt.)(9a) 

u - u, = AU = ja@(T,)/(B.m,)dT = la@(T,)/m,dt (v=const.)(9b) 

s - s, = AS = ~A@(T, )/(T,*B.m, IdT (p=const.)(9cl 

and from these functions the remaining ones due to equations 
6 and 7. 

In the case, that the heat flowing into the sample is not 
only for warming up of it but also for other events, as for 
instance phase changes, we have to start from the first law 
of thermodynamics 

du = dQ + dw + XdE, (10) 

where Q is the heat, W the work and Ei other energy forms 
(e.g. surface energy, deformation energy. chemical energy) 
exchanged during the process in question. Hence, taking dW as 
volume work -pdV, we get 

dU = dQ - pdV + IdEi (lla) 
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and with the identity H z U + pV 

dH = dQ + vdp + IdE, (lib) 

Integration yields the excess quantities of the process 

aHe = [dQe + ZldE, = ja@"dt + f[dE, (p=const.) (12a) 

ALP = jdQ= + IjdE, = Ja+'dt + ;JdE, (v=const.) (12b) 

As a result we find, that the integral over the excess heat 
flow rate (peak area) is equal to the change of the potential 
function only if there are no further energy forms changed 
during the process (all dE,=O). This condition must be 
checked carefully in practice, it is not at all trivial 
especially in the case of phase transitions and chemical 
reactions where both surface energy and wetting may change 
non-neglectably. 

Furthermore it should be reminded, that the differentials 
on the right side of equation 10 are no total ones. As a 
result the quantities on the right side of equation 12 may 
depend on the path the process is driven on, whereas the sum 
(the left side) is a difference of state functions and 
doesn't depend on the path of the process. In a dynamical 
calorimeter, as the DSC, the process in the sample is run 
away from equilibrium and the path may already change with 
the change of the heating rate. Thus the measured heat may 
depend on the heating rate, which must not be the case for 
any state function (e.g. AH). 

Often it is not easy to determine the excess heat flow 
rate, especially in the case of chemical reactions, 
changes as the reactants and the reaction product 

where cP 
are dif- 

ferent materials with different heat capacity. Here a determi- 
nation of the excess heat flow rate by drawing a straight 
line between the beginning and the end of the reaction is not 

AH 

Temperature 

Figure Determination of the ex- 
cess enthalpy of an reaction. 

possible. Instead the 
reaction enthalpy can be 
determined from the 
integral over the 
function between a staz 
ting and an end tempera- 
ture, leading to the 
total enthalpy change 
between these temperatu- 
res. In this function the 
reaction enthalpy appears 
as a step change, which 
can be determined at 
every wanted temperature 
by extrapolation of the 
enthalpy function of the 
reactants and that of the 
product to the tempera- 



ture in question. For precise determination of reaction 
enthalpies directly from DSC curves the reader is referred to 
literature [l]. 

2. PRACTICE 

2.1 In absence of phase transitions 
A DSC is a dynamical calorimeter where the temperature is 

changed during the measurement. As heat transport needs time, 
the sample reaches the program temperature later as the 
temperature sensor does. In other words there is a thermal 
lag between the temperature of the controller and the sample 
temperature. This lag increases with the heat flow, because 
of the proportional connection between the heat flow rate and 
the temperature gradient in question. Thus the difference 
between program temperature and true sample temperature 
depends on the heat flow rate and for that reason on the 
sample mass and on the heating or coolinq rate (see Fig.1). 

Another thermal lag ori- 
ginates from the tempera- 
ture profile in thick 
samples. During steady 
state heating with con- 
stant rate there is a pa- 
rabolic temperature pro- 
file [2] inside the sample 
with the average value 
depending on thickness d, 
thermal conductivity A, 
density 3 and heating 
rate p 

Figure 1. Thermal lag nT and its 
influence on calculated cP for a 
thin sample. The measured curves 
differ in heating rate. 

Figure 2. Thermal lag AT and its 
influence on calculated cP for a 
thick sample. The measured curves 
differ in heating rate. 

As T = cp* g*fi.d2/3A (13) 

a,T is the temperature 
difference between the 
average temperature inside 
the sample and the tempe- 
rature of the low border 
of the sample at the bot- 
tom of the pan. Comparing 
Fig. 1 with Fig. 2 this 
additional thermal lag is 
distinct. 

As can be seen from this 
figure the thermal lag 
causes a decrease of the 
calculated heat capacity 
due to the true one. The 
reason of this is the 
thermal lag in connection 
with the temperature 
dependence of the heat 



capacity. The sample has a lower temperature as the plotted 
program temperature and thus the heat flow rate is also lower. 
Consequently the calculated heat capacity (see eq. 8) must be 
to small as well. Usually the temperature dependence of the 
heat capacity is rather weak and therefore the error low, but 
it should be considered for precision measurements. 

2.2 With phase transition 
If additionally a first order transition takes place in the 

sample, we find a peak in the measured curve. The connections 
between the result of the measurment and 
function searched are as shown in Fig. 3. 

the potential 
Obviously the DSC 

curve (i) and the heat capacity function of a first order 
transition (v) resoective its intearal (vi) differ 
and there are several steos (a - e) 

distinctly 
of "translation" neces- 

sary. 

(i) 

f 

@In 

The first three procedures are well known 

(ii) 

T m- (a) Calibration 
correction 

T: trans 

(iii) , 

T true - 
1 
(b) Subtraction 

of baseline 

c) Deconvolution 

Figure 3. Procedures to come to thermodynamic potential 
functions from DSC heat flow rate curves. 



(vi) 
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AH 

T sample - 
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7 sample - 

Figure 3 (continued). 

(c) Deconvolution 

a 

(d) Advanced 
desmearing 

(e) Integration 

(bf 
(c) 

correction of the heat flow and temperature scales due to 
the results of the calibration, 
subtraction of the baseline, 
"desmearing" (deconvolution) due to the falsification of 
the sample heat flow on the way through the apparatus. _ _ 

Nevertheless, the curve got after these procedures (which 
should correct all influences of the apparatus on the measured 
heat flow) represents the first order phase transition (e.g. 
melting) as a triangle instead of a Dirac delta function as it 
should be. The reason for this is that the temperature of the 
sample doesn't change until phase transition is completed. As 
the program temperature proceeds during this time, the tempe- 
rature gradient from DSC to sample increases linearly and thus 
the heat flow. The slope is proportional to the heat conducti- 
vity between DSC and sample. 

Procedure (dl in Fig. 3 involves, beside the calculation of 
cp with the aid of eq. 8a, a non-linear transformation of the 
temperature scale. In the case of a first order phase transi- 
tion of a pure substance this transformation is rather simple 



and aim at a compression of the temperature scale between TX 
and T, to one point T,,,,, (Fig. 4). 
For a phase transition of a non-pure sample the procedure is 

not so simple and must be done with the theoretical background 
of the transfer theory (theory of linear response1 coming out 
t0 a desmearing of the measured curve with the triangle 
function of the pure substance as apparatus function [31. In 
Fig. 5 this is done and the resulting true cp function can for 
instance be used to calculate the phase diagram or to 
determine the impurity in question. 

Desmearing = 
compression of the 
temperature scale 

Figure 4. &smearing of the melting peak of a pure substance: 
(i) DSC curve after correction of all apparative influences, 
(ii) calculated after transformation of the temperature scale. 

Finally the procedure (el is state of the art again. The 
integration indeed also be done on c 

desm~are~~ue to procedure (d). 
curves which are 

not In &is case the resul- 
ting enthalpy curve is incorrect in the region of the phase 
transition and must not be taken for further thermodynamical 
evaluations in this region, 

It should be emphasized that a finite thickness of the 
sample arises to an additional smearing of the curves in the 
case of a phase transition as well, as the melting zone is 
walking through the sample (due to the temperature profile) 
the melting peak is broadened additionally. 
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(i) 

(ii.1 
Advanced desmearing 

T bmr T Probe - 

Figure 5. Desmearing procedure of the melting peak of an 
impure substance 

2.3 Desmearing 
The total procedure leading from the DSC curve to thermo- 

dynamical potential functions has been described above in 
principle. It looks to be rather complicated, but in fact 
most of it is state of the art in evaluation software. There 

only the deconvolution of the apparative smearing and 
Zsmearing of 

the 
the sample influence on the heat flow rate 

curve which are not commonly used. 
The deconvolution procedure for the apparative influence 

has been subject of research for a long time (see e.g. 
[4.5.611 and shall be presented here only briefly. The mean 
idea is to solve the convolution integral 

a,(t) = I@, (t').a(t-t')dt' (14) 

for the reaction heat flow rate 9, (t), with Q,,,(t) being the 
measured heat flow rate and a(t) the so called apparatus 
function. The latter is the answer of the apparatus on an 
impulse like event at the place of the sample, and can easily 
be determined by measuring the response of the DSC on very 
fast heat releasing processes as light flashes, crystallisa- 
tion after supercooling of say an Indium grain, or heat 
impulses from an electrical heater. 
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The desmearing procedure of the sample influences is, as 
pointed out above, in general not an easy one, 
case of first order phase transitions. 

especially in 
Nevertheless, in the 

case of steady state conditions or transitions without latent 
heat (as the glass transition) it can be done. 
One method depends on the fact, that the slope of the heat 

flow rate curve after switching from isothermal to scanning 
mode, or vice versa, is the response of the apparatus on a 
step change of the scanning rate and thus contains all 
necessary information on the heat transfer behaviour of both 
apparatus and sample 171. 
is valid, 

If the linearity of the 
the output function is also a convolution 

equipment 

of the searched desmeared function and the apparatus 
product 
function 

derived from the heat flow rate curve between switching the 
scanning rate on and off and obtaining steady state condi- 
tions 171. 
A considerable advantage of this desmearing method is the 

fact, that both apparative and sample influences can be 
desmeared in one procedure. Especially the falsification of 
the 
the 

c,, function due to the thermal lag is also corrected at 
same time. On the other hand the desmearing problem 

presented in figures 4 and 5 cannot be solved by this method. 

3. CONCLUSIONS 

The differential scanning calorimetry is a suitable method 
to determine thermodynamical potential functions, 
the heat capacity. 

especially 

the smearing 
But the experimenter has to pay attention 

to effects of 
Especially 

both apparatus and 
influence of the sample and 

sample. 
the the temperature 

profile inside of it on the measured curve should be noted. In 
case of large sample masses of bad heat conductivity and 
heating rates above 5 K/min the smearing effect may amount to 
several Kelvin. 
On the other hand desmearing is easy possible with the aid 

of modern computer techniques and should be done as far as 
possible to get the true potential function, especially in the 
case of narrow transitions or reactions. 
A desmearing is not necessary, if the expected corrections 

are obviously smaller than the certainty of the results 
aspired to. That is to say, if the thermal lag for instance 
causes an error in c,, determination of 0.2 percent and the 
measurement results in an uncertainty of say 3 percent, a 
desmearing is indeed meaningless. The same is valid for 
processes which are very broad in terms of temperature. 

Taking this facts in consideration, the DSC is, neverthe- 
less, a quick and elegant method to determine thermodynamic 
potential functions with an sufficient precision. 

It is desirable to determine the heat capacity function 
more frequently instead of the heat flow rate curve, as it is 
the base of all thermodynamic evaluation and thus of more 
information. The DSC is indeed a method which enables resear- 
chers to do true calorimetry. 
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